Five Tyrosines and Two Serines in Human Albumin Are Labeled by the Organophosphorus Agent FP-Biotin

نویسندگان

  • Shi-Jian Ding
  • John Carr
  • James E. Carlson
  • Larry Tong
  • Weihua Xue
  • Yifeng Li
  • Lawrence M. Schopfer
  • Bin Li
  • Florian Nachon
  • Oluwatoyin Asojo
  • Charles M. Thompson
  • Steven H. Hinrichs
  • Patrick Masson
  • Oksana Lockridge
چکیده

Tyrosine 411 of human albumin is an established site for covalent attachment of 10-fluoroethoxyphosphinyl- N-biotinamidopentyldecanamide (FP-biotin), diisopropylfluorophosphate, chlorpyrifos oxon, soman, sarin, and dichlorvos. This work investigated the hypothesis that other residues in albumin could be modified by organophosphorus agents (OP). Human plasma was aggressively treated with FP-biotin; plasma proteins were separated into high and low abundant portions using a proteome partitioning antibody kit, and the proteins were digested with trypsin. The FP-biotinylated tryptic peptides were isolated by binding to monomeric avidin beads. The major sites of covalent attachment identified by mass spectrometry were Y138, Y148, Y401, Y411, Y452, S232, and S287 of human albumin. Prolonged treatment of pure human albumin with chlorpyrifos oxon labeled Y138, Y150, Y161, Y401, Y411, and Y452. To identify the most reactive residue, albumin was treated for 2 h with DFP, FP-biotin, chlorpyrifos oxon, or soman, digested with trypsin or pepsin, and analyzed by mass spectrometry. The most reactive residue was always Tyr 411. Diethoxyphosphate-labeled Tyr 411 was stable for months at pH 7.4. These results will be useful in the development of specific antibodies to detect OP exposure and to engineer albumin for use as an OP scavenger.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Albumin, a new biomarker of organophosphorus toxicant exposure, identified by mass spectrometry.

The classical laboratory tests for exposure to organophosphorus toxicants (OP) are inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity in blood. In a search for new biomarkers of OP exposure, we treated mice with a biotinylated organophosphorus agent, FP-biotin. The biotinylated proteins in muscle were purified by binding to avidin-Sepharose, separated by gel ele...

متن کامل

Tyrosines of human and mouse transferrin covalently labeled by organophosphorus agents: a new motif for binding to proteins that have no active site serine.

The expectation from the literature is that organophosphorus (OP) agents bind to proteins that have an active site serine. However, transferrin, a protein with no active site serine, was covalently modified in vitro by 0.5mM 10-fluoroethoxyphosphinyl-N-biotinamido pentyldecanamide, chlorpyrifos oxon, diisopropylfluorophosphate, dichlorvos, sarin, and soman. The site of covalent attachment was i...

متن کامل

Detection of adduct on tyrosine 411 of albumin in humans poisoned by dichlorvos.

Studies in mice and guinea pigs have shown that albumin is a new biomarker of organophosphorus toxicant (OP) and nerve agent exposure. Our goal was to determine whether OP-labeled albumin could be detected in the blood of humans exposed to OP. Blood from four OP-exposed patients was prepared for mass spectrometry analysis by digesting 0.010 ml of serum with pepsin and purifying the labeled albu...

متن کامل

P 57: The Effect of Biotin as a Therapeutic Agent for Progressive Multiple Sclerosis

Multiple sclerosis is an autoimmune disease caused by damage to the myelin of the nerve cells in the spinal cord and brain, MS was classified into 4 types including: Relasping/remitting (RR) primary/progressive (PP), secondary/progressive (SP), progressive/relapsing (PR). PR MS is one of the severe forms of MS that lead to inflammation associated physical, mental and vision dysfunction. Because...

متن کامل

Detection of dichlorvos adducts in a hepatocyte cell line.

The toxicity of dichlorvos (DDVP), an organophosphate (OP) pesticide, classically results from modification of the serine in the active sites of cholinesterases. However, DDVP also forms adducts on unrelated targets such as transferrin and albumin, suggesting that DDVP could cause perturbations in cellular processes by modifying noncholinesterase targets. Here we identify novel DDVP-modified ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2008